
AO-Alft 923 VIEWS FOR EVOLUTION IN PROGRAING ENVROENTS(u) 1/I
CARNEGIE-NELLON UNIV PITTSBURGH PR SOFTWARE ENGINEERING
INST J1 R NESTOR DEC 9? CHU/SEI-6?-TR-45 ESD-TR-S?-2S8

tUFL SiSIF ED F 1%9 9 2B-003 6 F/0 12/5 L

K..

*lI0l
1_2 51*0IL-

IWO~

o25'.,
If ~ iii ____-6

JUMPii4 I4 Jw 1111 ~-"

Technical Report
CMU/SEI-87-TR-45
ESD-TR-87-208

-"'-- Carnegie-Mellon University I ""

- Software Engineering Institute

Views for Evolution in
Programming Environments

(V)
John Nestor

December 1987

00 DTICa OILECTE W.
FES 0 aM

* 4 U•
* *

TE74 A

I -.

88 2 01 114

Technical Report
CMUISEI-87.TR-45

ESD-TR-87-208
December 1987

Views for Evolution in Programming
Environments

John Nestor

Accesion for
N i-S CRA&
L)TIC TAB[1

By

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

I.

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published In the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler

SEI Joint Program Office

This work was sponsored by the U.S. Department of Defense.

This document Is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel. DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center. Attn: FDRA, Cameron Station, Alexandria. VA 22304-6145.
Copies of this document are also available through the National Technical Information Services. For infornation on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161,

.,' 0

Views for Evolution in Programming
Environments

John R. Nestor

Software Engineering Institute, Carnegie Mellon University
November 29, 1987

Abstract
Programming environments have become a focal point for much of the work

diretedtowrd iproingthepraciceof oftare ngieerng.Suchenvronent

dirste todiprovihng the rctrice ofd sotwarnintge Suchle stpeniroent
mteproviad mcanisemsn faa ascliganed orghaizings the mpese of ersise
stniae asdy angm ent dap asocited wit al iprtnspftlfee of lacp ret
sow sytalem tiperfeson ohnteeitne imoran aset of prsucersitenut

dange too mallowi evolton whent the reisting ifnain mbeprormigenveihouet
iichanged maNtanhsoxFrt, the olead of hisltorin preogramingre eniron
is lediscusseNextrothems adiena demansmoseouo are csedaonsioandsw
tledoseofproblems. Viiplxapew mechavngiesm irecggestar uteis toresee
tiluteteeproblems. A simple exampleeinvolvingcfiledsystemdirectory ucueispesnted

introduced and shown to solve the illustrated problems. J.

Ithis work was sponsored by the Depeflsnrnt of Defens. The views and conduhsions contained in
his pqwe wre thoee of the atho r an should not be .uerpuusd a representing official policies. either -

expresed or imnplied. of the software Enginessing Institute, Carnegie Mellon University, the Depnent
of Dofeme, or the US. Govenusent

low N

1 Persistent Object Bases

The demand for software is steadily increasing both in the number of systems being
built and in the complexity of these systems. Our ability to produce these systems
has also been increasing in part due to an increasing number of qualified software
developers and in part due to the increased per-person productivity resulting from
improved technologies and methods. Unfortunately, demand for software has consis-
tently been growing faster than our ability to produce it. Software is often delivered
late, costs much more than originally predicted, and fails to satisfactorily do the job
for which it was built. The combination of these problems is what many have char-
acterized as the software crisis and has led to increasing emphasis on the field of
software engineering whose goals are directed at solving these problems.

Modemn software technologies allow software engineers to automate many of
the processes that previously were often implemented by inefficient manual or semi-
automatic procedures. Such improvements increase our expectations, leading to larger
software projects. Larger projects, in turn, require improved communications among
managers, users, designers, and maintainers. These automation and communication
needs place increasing demands upon the underlying hardware. In place of a sin-
gle batch or time sharing machine, increasing emphasis is being placed on use of
workstations, distributed computation, and networks to integrate previously separate
computer systems into a single vast communication and computational system.

A prograrmming environent is a set of hardware, software, and methods that
assists software engineers with all aspects of software production. Programming
environments have become a focal point for much of the work directed toward im-
proving the practice of software engineering. The management of persistent data
is increasingly becoming a central issue for such environments. Environments are
being called upon to be the repository of all information, both technical and manage-
rial, created throughout the lifecycle of software system from requirements though
deployment and continued enhancement. Each phase of the lifecycle adds new infor-
mation particular to that phase as well as information relating that new information
to previous information. All of the information is modified and extended as work
progresses. Not only is the current state of information needed but is often necessary
to retrieve historical information as well.

Most programming environments now support persistent data by using a file
system with one or more ad-hoc databases. Most new environment efforts are moving
toward a more object-oriented approach that is a synthesis of ideas from file systems
and databases. Such next generation systems are referred to as persistent object
bases and consist of a set of persistent objects that capture both file-like concepts,
such as source and executable programs, and database concepts, such as attributes and
relatons. These new systems will differ in several important ways from traditional
database systems (1,2).

*Data and Operations. While traditional database systems provide support for
large sets of small fixed size objects of a limited number of types, persistent

object bases will need to support large variable sized objects of many types
with complex interrelationships. While simple operations such as join and
projection are common in traditional databases, persistent object bases require
more complex operations such as transitive closure. Although persistent object
bases can be built on top of existing databases, the differences in data and
operations result in an unacceptable loss of performance.

" Distribution. Most current database systems run entirely on a single machine.
Persistent object bases will need to run on large heterogeneous networks that in-
clude many workstations and special server nodes all integrated into a coherent
whole.

" 71ansactions. While database system typically process very short transac-
tions lasting less than a second each, persistent object bases must support long >

transactions, such as modifying a source file, that can last hours or even days.

" Abstraction. Most database systems have only a small number of built-in types
that are structurally composed by a central database administrator to form an
overall schema for the entire database. In a persistent object base, full abstract
data types must be supported and type definition ability must be extended to
both tool builders and end users.

" History. A persistent object base must be be able to support historical versions
of individual objects and of complex configurations. It must be possible to go
back to an earlier release of a software system and re-create it in exactly the
same way in which it was originally created.

Although the focus here is on the needs of programming environments, similar
problems arise in other applications that require a large number of variable sized
objects kept over a long period of time and shared by large groups of people. Both
computer aided design and the document filing aspects of office automation have
these characteristics. Solutions identified by research in software environments will
also be applicable to these and other similar application areas.

This paper focuses on one imporant aspect of persistent object bases: how to
allow evolution when the existing information must be preserved without change to
maintain history. First, the role of history in programming environments is discussed.
Next, the additional demands of evolution are considered and shown to lead to a set
of problems. View mechanisms are suggested as a solution to these problems. A
simple example involving file system directory structure is presented to illustrate
these problems. A simple view mechanism, called multidirectories, is introduced and
shown to solve the illustrated problems.

2 History

Two related history concepts needed in programming environments are introduced
here- source versions and re-creation.

2

Every time a source file is edited, logically a new version is created, so that
over time a linear sequence of versions is created. When alternatives occur, such
as when a bug is fixed in an old release while work continues on the next release,
the sequence can fork; when alternatives come together separate sequences can join.
Abstractly, a directed acyclic version graph is formed. Not all points in the version
graph are equally important. In practice, users do not preserve versions below some
minimum level of granularity. The finest granularity is a version for every edit. A
coarse granularity is at versions that are major releases. Intermediate granularities
are frequently defined to aid the management of a development project. The concept
of versions can be usefully extended to multiple related source files which may be
considered to be progressing in parallel along a version graph.

Re-creation is the ability to go back to an old version of a software product and
repeat all of the steps that were involved in manufacturing it [3]. Manufacturing takes
primitives such as source modules and produces products such as executable programs
by performing a set of manufacturing steps. AU inputs to each manufacturing step,
including the program used to perform the step must either be a primitive or the result
of some previous step. The partially ordered set of manufacturing steps is captured
by a derivation graph. Re-creation of a product is possible if its derivation graph and
set of primitive components are known and they have not been changed since the
product was originally created.

Re-creation is important because it captures key information about a product. If
a product is re-creatable, then the relation between that executable product and the
primitive source modules from which it was built will be known. Re-creation also
makes it possible to produce a variant of some product.

3 Evolution

The way in which an object is viewed during the software development process will
evolve over time. Even though its value may remain fixed, other kinds of information
will be added or modified. An important trend in programming environments is to
provide information not just about the software product but also about the software
process. Process activities such as analysis and testing, reuse of a module in multiple
products, and iterative development strategies all contribute substantial evolutionary
information about program objects.

In environments based on traditional file systems, evolution is accomplished by
moving, copying, editing, and deleting of information. This approach is not appro-
priate for next generation environments for two reasons:

" History. It is very difficult to record a complete version history and to ensure

re-creation when the information involved has been moved or extended.

" Identity. When multiple copies of some object are created, the logical equiv-
alence of the two copies is lost.

3

An alternate approach is considered here. The basic idea is to keep history
information fixed and thus ensure re-creation, but to allow the way in which that
information is viewed to evolve. A view mechanism is software that allows a map
to be imposed between the user and the data. This map provides for various kinds
of evolution:

Additions. During evolution, new properties are added to objects. If the
manufacturing process can be affected by this addition of object properties,
then re-creation may not be possible. This problem is caused by treating the
properties of an object as part of the object. In file systems, such properties
include the fully qualified name of the file and attributes such as creation date.
Most database systems have atribute mechanism that group attributes with
objects. A solution is to store new attributes in some place away from the
object to which they apply and then use a view mechanism to make it look as
thought they are part of the object. In the same way that there can be versions
of individual objects, there can also be versions of the system views which
each view representing some point in time.

" Restrictions. As the amount of information in an environment increases, a user
can easily get lost in the overall complexity. Views can be used to solve this

problem by giving each class of user, or even each individual user, a personal .
view into the small subset of the total information that is relevant to the task
at hand.

One general purpose approach to views is to allow arbitrary functions that map
between the existing information and the way in which that information is viewed
by the user. Although such an approach provides full generality, such generality is
often only obtained with a considerable cost in lost performance. Special case view
mechanisms are of interest when they provide for an important set of real needs
without sacrificing performance. By combining such special purpose mechanisms
together under a general view abstraction it may be possible to have the full power
and generality combined with high performance for most common cases where it is
used. One such special case view mechanism is presented here. The next subsection
introduces a set of problems with directories as found in common file systems. The
following subsection then shows how those problems can be solved by a simple
special case view mechanism.

4 Directories

Most file systems are organized as a tree of files, each of which is either a directory
or an ordinary file. Within the tree, directories appear as inner nodes and files appear
a leaf nodes. The root of the tree is a unique directory from which all directories
and files can be reached. Each directory is a mapping between file names and the
files themselves. Each file has a unique path name given by the path from the root

4

N il I 'll 1 1 1 11 ,1 11 11
p

directory to the file. For example, the path name /usr/bin/man is for a file named
man that is reached from the root directory via first the usr directory, then via the
bin directory.

wOne problem with a tree siuctured file system is that the user is forced to represent

relad problm is that as a system evolves the user periodically must do major
reorganizations of the data within the file system. These reorganizations are needed
because the preexisting hierarchical structure increasingly deviates from the actual
logical relationships. Not only is considerable user effort required to perform the
reorganizations, but these reorganizations compromise re-creation.

Consider a system being built as part of some project called Q. A directory is
built for the project.

/pro jects/Q

Initially, all files for the project are placed in that directory. Soon the number of files
in that directory has grown to where more structure is needed. Suppose that both
documentation files and program files exist. To provide more structure, two new
directories are created.

/pro jects/Q/documentation
/pro jects/Q/program

All of the files are moved into one or the other of these two directories. Not only
is there the extra work involved in moving the files into the two new subdirectories,
but all references to Q must now be changed to refer to one or the other or both of
the two new subdirectories.

Consider next that it is time to release the Q system to users. Users need the Q
executable file and the Q user manual, but not the Q source code or the Q internal
documentation. These files are a subset of the files in the two subdirectories. Since
users should not have to know about the substructure of the Q project directories
and be confused by all those other files that don't matter to them, a new directory is
created to hold copies of the files that the users will need.

/release/Q

Moving files was bad enough, but in this case there are now actually two copies of
the same files.

Next, consider that it is time to produce a new version of the Q system. If the
previous version of Q is to be preserved, the directories must be split.

5 A

A5-

.-

/projects/Q/documentatlon/Vi
/projects/Q/documentation/V2
/projects/Q/program/V1
/projects/Q/program/V2
/release/Q/Vl
/release/Q/V2

Here all the old files are moved into the vi directories. The V2 directories will be
used for the new version of the system. A simple way to do this is to start by copying
all the V1 files into V2. Work on the new version then can be done by changing the
V2 file while leaving the vi files intact.

The directory tree shown above is only one of several possible ways of organizing
the information. The following are alternative ways of structuring the tree: ,

/pro jects/Q/Vl/documentation
/pro jects/Q/V1/program
/projects/Q/V2/documentation
/pro jects/Q/V2/program
/release/Q/Vl
/release/Q/V2

/V1/projects/Q/documentation
/Vl/pro jects/Q/program
/VI/release/Q
/V2/projects/Q/documentation
/V2/pro jects/Q/program
/V2/release/Q

The presence of several equally valid forms indicates each form contains some infor-
mation that is a property of the representation of the form that has little to do with
the overall logical structure of the information.

5 Multidirectories

A simple view mechanism responds to the problems illustrated in the previous section. ,.
The mechanism is based on an extended kind of directory, a multidirectory, in which
each name can map to a set of objects. One use of a multidirectory is to divide a set of
objects into a set of partitions, each of which represents some equivalence class. This
can be further generalized by letting the named subsets overlap and thus produce a
cover rather than a partition. Several multidirectories can be used to provide different
orthogonal covers of a single set.

For example, suppose the o system in the previous section included all of the
following files:

6

-~~~~~ 14-y . .f~

Q. h.1 Q.h.2
X. c. I x.c.2

y. C. 1
Q.exe.1 Q.exe.2
Q.mss.1 Q.mss.2
Q.doc.1 Q.doc.2

We can have several multidirectories of these files.
"Name. This partition groups all versions of the same object together under its

name.

Q.h ->(Q-h.1,Q-h.2}

x.C - (x.c.l,x.c.2) S
y.c -) y.c.1)
Q.exe -> Q.exe.l,Q.exe.2)
Q.niss -> Q.mnss.l,Q.mss.2)
Q.doc -> Q.doc.1,Q.doc.2)

" Configuration. This cover groups the files into configurations corresponding
to two versions of the system.

VI -> Q.h.1,x.c.1,y.c.1,Q.exe.1,
Q. mss 1,0 .doc.1)

V2 ->(Q.h.2,x.c.2,y.c.1,Q.exe.2,

Q.mss.2,Q.doc.2)

" Origin. This partition distinguishes user written files from derived files.

User -> {Q.h.1,Q.h.2,x.c.1,x.c.2,y.c.1,

0. mss.1 ,Q .mss .2)
Derived -> {Q.exe. 1,Q.exe.2,Q.doc. I,Q.doc.2)

" Kind. This partition distinguishes program files from documentation files.

Program -> Q.h.1,Q.h.2,x.c.1,x.c.2,y.c.I,
Q.exe. 1,Q.exe.2)

Documentation ->(Q.mss.1,Q.mss.2,

Q.doc. 1,Q.doc.2)

7

Access. This partition distinguishes files released to users from files that are
only available to developers.

Internal -> (Q.h. l,Q.h.2,x.c. l,x.c.2,y.c. 1,
Q.mss. l,Q.mss.2)

Release -> (Q.exe.l,Q.exe.2,Q.doc.l,Q.doc.2}

P %

These multidirectories can be composed in order to yield many different views of the
system. The basic composition operator enables a mulidirectory to be viewed via
some set. Thus, Name via Configuration.V2 is: J.

Q.h -> (Q.h.2J

x.c -> {x.c.2)
y.c -> {y.c.1)
Q.exe -> {Q.exe.2)
Q.mss -> {Q.mss.2)
Q.doc -> (Q.doc.2}

As a more complex example, Name via Origin.User via Kind. Documentation
is:

Q.mss -> (Q.mss.l,Q.mss.2l

An alternate way of thinking about a multidirectory is that it gives the value of
some attribute of a set of files. For example, the Kind multidirectory, provides the

following values for the Kind attribute:

Q.h.1 -> "Program"

Q.h.2 -> "Program"
x.c.1 -> "Program"

x.c.2 -> "Program"

y.c.I -> "Program"

Q.exe.1-> "Program"
Q.exe.2 -> "Program"

Q.mss.1 -> "Documentation"
Q.mss.2 -> "Documentation"

Q.doc.1-> "Documentation"

Q.doc.2 ->"Documentation"

Observe that since the attributes are not stored with the object to which they apply,
they can be added without modifying the object or compromising re-creation.

Multidirectories provide solutions to the evolutionary problems of normal file

8

".

system directories: %

* Copies. When a single file is used in several different ways, instead of creating
multiple copies of the file, multidirectories can be used to create multiple views
of the file. For example, instead of copying files from the /projects/Q
directory to the /release/Q directory, the Access multidirectory was added
to permit the views Name and Name via Access. release.

* Evolution. Mutidirectories permit information to evolve without the need
to modify or move existing files. For example, instead of having to split
/projects/Q into

/projects/Q/documentation
/pro jects/Q/program

all that was needed was to add the Kind multidirectory. No files were copied
or modified, and therefore, re-creation was not compromised.

* Alternate Representations. Multidirectories avoid the problem of having to
select some specific representation out of a set of equally valid alternatives.
For example, the directory distinction between

/pro jects/Q/documentation/Vl
/pro jects/Q/Vl/documentation
/Vl/projects/Q/documentation

disappears when multidirectories are used.

In summary, multidirectories allow users to organize their information in a more
natural way than is possible in a conventional file system. Multidirectories allow
information to evolve without forcing changes that could make re-creation difficult.
Finally, multidirectories are a simple view mechanism that should have quite a effi-
cient implementation.

6 Conclusions

Existing programming environments have the problem that they can not simulta-
neously guarantee re-creation, permit evolution, and avoid multiple copies. View
mechanisms solve this problem by allowing historical information to remain fixed
thus supporting re-creation but allowing the way that we view that data to evolve.
Such view mechanisms will be a key component of the persistent object bases on
which future programming environments will be based.

9

7 References

1. John R. Nestor, 'Toward a Persistent Object Base", International Workshop
on Programming Environments, Lecture Notes in Computer Science, Number
244, Springer-Verlag, 1986.

2. Philip A. Bernstein, "Database System Support for Software Engineering, An
Extended Abstract", 9th International Conference on Software Engineering,
IEEE Computer Society Press, 1987.

3. Ellen Borison, "A Model of Software Manufacture", International Workshop
on Programming Environments, Lecture Notes in Computer Science, Number
244, Springer-Verlag, 1986.

10

IUNLIMITED-, 11NtrT.A4.RTE1E
ECURITY CLASSIFICATION OF THIS PAGE d- T,

REPORT DOCUMENTATION PAGE
1. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

2SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b). OE CtASS F ICATION/DOWNG RAOING SCHEDOULE DISTRIBUTION UNLIMITED

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-45 ESD-TR-87-208

Ga. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/XRS1

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

So, NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

Be. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

SOFTWARE ENGINEERING
INSTITUTE JPO

PTTTR1RG.H. PA 15213 N/A N/A N/A
11. TITLE (Include Security Clauaification)

VIEWS FOR EVOLUTION IN PROGRAMMING ENVIRONMEtTS

12. PERSONAL AUTHOR(S)

JOHN R. NESTOR
13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Davy 16. PAGE COUNT

FINAL IFROM TO _ DECEMBER 87 12
16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (Continue on reuerse if neceary and identify by block number)

FIELD GROUP SUB. GR. PROGRAMING ENVIRONMENTS, PERSISTENT DATA, VIEW MECHANISM
MULTIDIRECTORY

1S. ABSTRACT (Continue an reverse if necessary and identify by block number)

PROGRAMMING ENVIRONMENTS HAVE BECOME A FOCAL POINT FOR MUCH OF THE WORK DIRECTED TOWARD
IMPROVING THE PRACTICE OF SOFTWARE ENGINEERING. SUCH ENVIRONMENTS MUST PROVIDE MECHANISMS

FOR RECORDING AND ORGANIZING THE COMPLEX SET OF PERSISTENT TECHNICAL AND MANAGEMENT

DATA ASSOCIATED WITH ALL PARTS OF THE LIFECYCLE OF LARGE SOFTWARE SYSTEMS. THIS
PAPER FOCUSES ON ONE IMPORTANT ASPECT OF SUCH PERSISTENT DATA: HOW TO ALLOW EVOLUTION
WHEN THE EXISTING INFORMAITON MUST BE PRESERVED WITHOUT CHANGE TO MAINTAIN HISTORY.
FIRST, THE ROLE OF HISTORY IN PROGRAMMING ENVIRONMENTS IS DISCUSSED. NEXT, THE ADDITIONAL
DEMANDS OF EVOLUTION ARE CONSIDERED AND SHOWN TO LEAD TO A SET OF PROBLEMS. VIEW
MECHANISMS ARE SUGGESTED AS A SOLUTION TO THESE PROBLEMS. A SIMPLE EXAMPLE INVOLVING
FILE SYSTEM DIRECTORY STRUCTURE IS PRESENTED TO ILLUSTRATE THESE PROBLEMS. A SIMPLE
VIEW MECHANISM, CALLED MULTIDIRECTORIES, IS INTRODUCED AND SHOWN TO SOLVE THE ILLUSTRATED

PROBLEMS.

20. OISTRISUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UtCLASSIFIEO/UNLIMITED] SAME AS RPr. 0 OTIC USERS U UNCLASSIFIED, UNLIMITED

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOLU"C (include A ree Code)

KARL SHINGLER (412) 268-7630 SEI JPO

00 FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLIMITED. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

N *

JLMsD

~

D$IC~~

